论文:Unified Named Entity Recognition as Word-Word Relation Classification
代码:ljynlp/W2NER
1 创新思路
1、提出了一种基于word-word关系分类的统一NER建模模型(flat,nested,discontinuous)
2、该架构通过对实体词之间的相邻关系进行有效建模,用Next-Neighboring-Word(NNW)和Tail-Head-Word-(THW-)关系来解决统一NER的内核瓶颈问题
2 嵌套NER和不连续NER的示意图
3 NER as Word-Word Relation Classification
word-word矩阵,表示token对之间的关系,非对称,表示第行个token和第列个token之间的关系