1 数据说明
-
LANDSAT/LT5_L1T_TOA
-
详细的说明可以看注释
2 结果展示
3 详细代码
// Array Example:
// Linear Modeling of an ImageCollection
// longitude and latitude
var lon = 114.05;
var lat = 30.49;
var roi= ee.FeatureCollection("users/comingboy1118/China/CH_shi");
var roi= roi.filter(ee.Filter.eq("市","武汉市"));
Map.addLayer(roi,{},"roi")
// This function masks the input with a threshold on the simple cloud score.
var cloudMask = function(img) {
var cloudscore = ee.Algorithms.Landsat.simpleCloudScore(img).select('cloud');
return img.updateMask(cloudscore.lt(50));
};
// Load a Landsat 5 image collection.
var collection = ee.ImageCollection('LANDSAT/LT5_L1T_TOA')
// Filter to get only two years of data.
.filterDate('2005-04-01', '2018-04-01')
// Filter to get only imagery at a point of interest.
.filterBounds(ee.Geometry.Point(lon, lat))
// Mask clouds by mapping the cloudMask function over the collection.
.map(cloudMask)
// Select NIR and red bands only.
.select(['B4', 'B3'])
// Sort the collection in chronological order.
.sort('system:time_start', true);
// This function computes the predictors and the response from the input.
var makeVariables = function(image) {
// Compute time in fractional years relative to the start of the Epoch.
var year = image.date().difference(ee.Date('1970-01-01'), 'year');
// Compute the season in radians, one cycle per year.
var season = ee.Image(year.multiply(2 * Math.PI));
// Return an image of the predictors followed by the response.
return image.select()
.addBands(ee.Image(1)) // 0. constant term
.addBands(ee.Image(year).rename('t')) // 1. linear change
.addBands(season.sin().rename('sin')) // 2. seasonal change
.addBands(season.cos().rename('cos')) // 3. seasonal change
.addBands(image.normalizedDifference().rename('NDVI')) // 4. response variable
.toFloat();
};
// Define the axes of variation in the collection array.
var imageAxis = 0;
var bandAxis = 1;
// Convert the collection to an array.
var array = collection.map(makeVariables).toArray();
// Check the length of the image axis (number of images).
var arrayLength = array.arrayLength(imageAxis);
// Update the mask to ensure that the number of images is greater than or
// equal to the number of predictors (the linear model is solveable).
array = array.updateMask(arrayLength.gt(4));
// Get slices of the array according to positions along the band axis.
var predictors = array.arraySlice(bandAxis, 0, 4);
var response = array.arraySlice(bandAxis, 4);
// Solve for linear regression coefficients in three different ways.
// All three methods produce equivalent results, but some are easier.
// coefficients the hard way
var coefficients1 = predictors.arrayTranspose().matrixMultiply(predictors)
.matrixInverse().matrixMultiply(predictors.arrayTranspose())
.matrixMultiply(response);
// coefficients the easy way
var coefficients2 = predictors.matrixPseudoInverse()
.matrixMultiply(response);
// coefficients the easiest way
var coefficients3 = predictors.matrixSolve(response);
// turn the results into a multi-band image
var coefficientsImage = coefficients3
.arrayProject([0]) // get rid of the extra dimensions
.arrayFlatten([
['constant', 'trend', 'sin', 'cos']
]);
// use this mask for cartographic purposes, to get rid of water areas
var hansenImage = ee.Image('UMD/hansen/global_forest_change_2013');
var mask = hansenImage.select('datamask').eq(1);
// display the result
Map.setCenter(lon, lat, 8);
Map.addLayer(coefficientsImage.mask(mask).clip(roi), {
bands: ['sin', 'trend', 'cos'],
min: [-0.05, -0.1, -0.05],
max: [0.05, 0.1, 0.05],
});
// plot the results
var fitted = collection.map(makeVariables).map(function(image) {
var coeffs = coefficientsImage.select(['constant', 'trend', 'sin', 'cos']);
var predicted = image
.select(['constant', 't', 'sin', 'cos'])
.multiply(coeffs)
.reduce('sum')
.rename('fitted');
return image.select('NDVI').addBands(predicted);
});
print(fitted,'fitted')
var roi = ee.Geometry.Point(lon, lat);
print(Chart.image.series(fitted.select(['NDVI','fitted']), roi, ee.Reducer.mean(), 30)
.setChartType('LineChart')
.setSeriesNames([ 'NDVI',"fitted"])
.setOptions({
title: 'Original and fitted values',
lineWidth: 1,
pointSize: 3,
fontSize: 16
}));